

© Crown copyright 2015

You may re-use this document/publication (not including logos) free of charge in any format or

medium, under the terms of the Open Government Licence v3.0. To view this licence visit

http://www.nationalarchives.gov.uk/doc/open-government-licence; or write to the Information Policy

Team, The National Archives, Kew, Richmond, Surrey, TW9 4DU; or email:

psi@nationalarchives.gsi.gov.uk.

Lean Services Architecture Specification

Date: Thursday, 11 June 2015

Author(s): Nick Peach

Version: 2

Status: Release

VERSION HISTORY

Issue Date By Comment

1 04/02/2014 C. Preston MOD OGL Release

2 11/06/2015 R. Culverwell Release of updated specification

http://www.nationalarchives.gov.uk/doc/open-government-licence
mailto:psi@nationalarchives.gsi.gov.uk

Lean Services Architecture Specification

Page 2 of 43 Version 2 Release

CONTENTS

1 Introduction .. 5

1.1 Specification Objective ... 5

1.2 Structure of the Specification ... 5

1.3 Lean Services Architecture Intent .. 5

1.4 Lean Services Architecture Characteristics and Principles ... 5

1.5 Referenced Standards ... 6

2 Lean Services Architecture Overview .. 7

2.1 Architecture at a Platform Node ... 7

2.2 Service Registry and Event Handler ... 7

2.3 Lean Services Definition .. 7

2.4 Exploiting a Lean Service ... 8

2.5 Transport Agnostic ... 8

2.6 Binary format ... 8

3 Lean Services Schema Specification ... 9

3.1 Lean Services Schema Syntax .. 9

3.1.1 Lean Services Schema Header Attributes ... 9

3.1.2 Lean Services Definition Attributes .. 9

3.1.3 Lean Services Record Attributes ... 10

3.1.4 Lean Services Data Parameter .. 10

3.2 Lean Services Data Parameter Types .. 10

3.2.1 Primitive Data Parameters ... 10

3.2.2 Lean Services Record Data Parameter ... 11

3.2.3 Enum Data Parameter ... 11

3.2.4 Fixed Data Parameter ... 11

3.2.5 Lean Services List Data Parameter ... 11

3.3 Rules for Lean Services Schemas ... 12

3.3.1 Overview ... 12

3.3.2 Namespace and Name Rules .. 12

3.3.3 Versioning Rules For Schemas, Calls and Events ... 12

3.3.4 Service Fullname ... 13

4 Well-Known ls calls and ls events .. 14

4.1 Introduction .. 14

4.2 Mandated ls calls and ls events ... 14

4.3 Operation of the Architecture ... 15

Lean Services Architecture Specification

Page 3 of 43 Version 2 Release

4.3.1 Service Registry .. 15

4.3.2 The Event Handler and Lean Services Events ... 15

4.3.3 Designing and Implementing Services Suitable for Lean Environments 16

4.4 Mandated Services .. 16

4.4.1 {noderegistration} .. 16

4.4.2 {registersystem} ... 17

4.4.3 {deregistersystem} ... 17

4.4.4 {returnsystemstatus} .. 18

4.4.5 {returnallservicesoverview} .. 19

4.4.6 {returnservicedetail} ... 20

4.4.7 {registerservice} ... 21

4.4.8 {deregisterservice} ... 22

4.4.9 {returnservicestatus} .. 23

4.4.10 {registerinterestinevent} .. 23

4.4.11 {deregisterinterestinevent} .. 24

4.4.12 {returneventsofinterest} .. 25

4.4.13 {platformannouncement} .. 25

4.4.14 {lserror} .. 26

4.4.15 {systemstatusupdate} ... 27

4.4.16 {servicestatusupdate} ... 27

5 Lean Services Message Generation .. 28

5.1 lsbase Schema for Lean Services Call ... 28

5.2 lsbase Schema for Lean Services Event .. 28

5.3 lsbase Schema for Lean Services Wrapper ... 29

5.4 Lean Services Schema to Avro Schema Translation .. 30

5.4.1 Lean Services lsbase Schema Header .. 30

5.4.2 Lean Services Record Schema Header ... 30

5.4.3 Lean Services Name/Type Attribute .. 30

5.4.4 Lean Services Name/Type - List Attribute .. 30

5.4.5 Lean Services Null Type Attribute .. 30

5.4.6 Lean Services Enum Type - Symbols Attribute .. 31

5.4.7 Lean Services Fixed Type - Size Attribute ... 31

6 Transport Protocols ... 32

6.1 Mandated Transport Protocols ... 32

6.2 Uniform Resource Indicator Syntax .. 32

6.3 HTTP Transport Protocol ... 32

6.3.1 HTTP URI Specification ... 32

Lean Services Architecture Specification

Page 4 of 43 Version 2 Release

6.3.2 HTTP Usage with Lean Services ... 32

6.3.3 Call Mechanism ... 32

6.3.4 Event Mechanism – From System to Event Handler .. 33

6.3.5 Event Mechanism –From Event Handler to System ... 33

1 Appendix A – Barrier Validation Rules ... 34

1.1 Overview .. 34

1.2 Barrier Validation Rules Summary ... 34

1.3 Objective of this Specification .. 34

2 LPath Language .. 35

2.1 Context of Operation .. 35

2.2 Using LPath ... 35

2.2.1 LPath Syntax to Read a Primitive Field .. 35

2.2.2 LPath Syntax to Read a Record Field .. 36

2.2.3 LPath Syntax to Read a List Field .. 36

3 Barrier Validation Rule Syntax ... 37

3.1 Overview .. 37

3.2 Sections of the BVR ... 37

3.2.1 Header .. 37

3.2.2 Checks .. 38

3.2.3 Checks Header .. 38

3.2.4 String ... 39

3.2.5 Int, Long, Float and Double ... 40

3.2.6 Boolean ... 40

3.2.7 Enumerated ... 40

3.2.8 Bytes ... 40

3.2.9 Lean Services Record Field Type .. 41

3.2.10 List Field Type .. 41

3.2.11 Complete BVR Example ... 43

Lean Services Architecture Specification

Page 5 of 43 Version 2 Release

1 Introduction

1.1 Specification Objective

This specification defines the Lean Services schemas, messages, architecture and required
functionality of a complaint Lean Services Architecture implementation. Appendix A specifies the
syntax for Barrier Validation Rules to define content checks to be performed on Lean Services
messages by assurance devices. The additional standards that document any extended
functionality (and associated Lean Services Definitions and Records) used by a specific
implementation must reference and continue to adhere to this standard.

1.2 Structure of the Specification

Section 1 provides the background to the specification.

Section 2 provides an overview of the Lean Services Architecture.

Section 3 specifies the Lean Services message schema syntax.

Section 4 specifies the core Lean Services calls and events.

Section 5 specifies the Lean Services binary message format.

Section 6 specifies the transport protocols to carry Lean Services messages.

Appendix A specifies the Barrier Validation Rules syntax used to content check Lean Services
messages.

1.3 Lean Services Architecture Intent

The intent of the Lean Services Architecture (LSA) is to support the following:

 Comprehensive digital interoperability of systems both within and between any tactical
military location and platform, including the soldier platform;

 Coalition tactical interoperability;

 Interoperability between the strategic/operational and tactical environments.

1.4 Lean Services Architecture Characteristics and Principles

The LSA is a schema-based request/response and event message protocol and supporting
architecture that provides a Services Orientated Architecture (SOA) in the operational and tactical
military domain, or other similar environments.

Typical environmental characteristics for a domain using LSA are:

 No central servers available or that can be assumed to be accessible;

 Variable quality communications; low bandwidth, high latency, frequently interrupted;

 Large numbers of frequently changing participating systems and platforms.

Lean Services Architecture Specification

Page 6 of 43 Version 2 Release

The principles behind Lean Services are:

Strong
Architecture

Open, published and sufficiently specified to ensure compatible LSA
implementations;
Adheres to the principles of SOA, with loose coupling between components;
Managed forward and backward service compatibility.

Simple
Simple to understand in concept and simple to implement;
Familiar concepts that do not require new skills or techniques by programmers.

Software
solution

Software only and provides low implementation overhead;
Suitable for lean (low powered) computing devices and lean (low bandwidth)
communications;
Operating system, programming language and transport protocol neutral.

Flexible
Assume on-going core improvements, for example security and safety, through
schema definition and functionality updates;
New systems and associated services can be quickly and easily added.

1.5 Referenced Standards

Standards referenced in this document are listed in Table 1.

Name Location

Apache Avro version 1.7.5 http://avro.apache.org/docs/1.7.5/spec.html

Javascript Object Notation (JSON) Internet Engineering Taskforce RFC 4627

Hypertext Transport Protocol (HTTP) 1.1 http://www.w3.org/Protocols/rfc2616/rfc2616.html

Table 1. Referenced Standards

Lean Services Architecture Specification

Page 7 of 43 Version 2 Release

2 Lean Services Architecture Overview

2.1 Architecture at a Platform Node

Figure 1. The Lean Services Architecture Overview at a Node

Figure 1 shows a single Lean Services architectural node located on a platform, such as a base,
vehicle or soldier. Each node has a Service Registry and the platform can have multiple local
systems. Any system can offer an interface using Lean Services, either directly or, as shown in
Figure 1, by using a software adaptor. All communications within the Lean Services architecture and
between nodes use Lean Services calls and events.

2.2 Service Registry and Event Handler

The Service Registry queries each system for offered services (call and events defined using Lean
Services Definitions) and persists this information. As each service status changes, the Service
Registry is informed, which persists the updates. Both local and remote Lean Services systems and
Service Registries can query a Service Registry for offered services and the status of the services.
The Service Registry appropriately distributes all events generated by systems to other systems
whose interest matches the registered criteria using an Event Handler. The Event Handler can be
integrated with the Service Registry or be a discrete component.

2.3 Lean Services Definition

A Lean Services Definition is a schema that defines the data exchange messages for a service,
whether a call or event service. For a Lean Services call, the definition describes a 2-way
interaction, consisting of the call request message sent to the service and the response or error
message returned. For a Lean Services event, the definition describes the data produced by the
service. Version management of Lean Services Definitions is included in this specification to
manage both forward and backward compatibility of services through version changes.

The implementation of a Lean Services message uses a binary message format at the service
interface.

Lean Services Architecture Specification

Page 8 of 43 Version 2 Release

2.4 Exploiting a Lean Service

To allow the discovery and exploitation of services, the Service Registry persists both the Lean
Services Definition for each service and the Uniform Resource Identifier (URI) for the system
providing that service. The issuing of a Lean Services message to the URI causes the service to
operate.

2.5 Transport Agnostic

A Lean Services message is carried using the transport protocol defined in the service URI. To
provide a minimum guarantee of interoperability between implementations, the only mandated
transport protocol for Lean Services implementations is HTTP. To add additional transport
protocols, either the Service Registry and system/adaptor implementations are all functionally
extended to natively support additional protocols or a Gateway is incorporated to convert between
protocols.

2.6 Binary format

The proven and open Apache Avro (http://avro.apache.org) MUST be used as the data serialisation
technique for Lean Services to enable messages to be sent in binary format (to significantly reduce
footprint). Avro is dynamically typed so does not mandate specially generated code to serialise and
de-serialise each type of message. The messages can be created and read in a scripted
environment, allowing unfamiliar messages to be read with general-purpose software (as long as
the schema is known). This accelerates the implementation of interoperability. Avro produces
compact binary files appropriate for transmission over tactical radio systems and in lean
environments.

Lean Services Architecture Specification

Page 9 of 43 Version 2 Release

3 Lean Services Schema Specification

There are 2 types of Lean Services schema used to define a service, LS Definition and LS Record.

A LS Definition defines the data exchange supported by each lean service. The LS Definition can
define the data exchange as a Call, which is request/response (two-way), or an Event (one-way).

A LS Record defines a re-usable data structure that can be used by an LS Definition and other LS
Records. To support consistency and normalisation of data handling, a data dictionary of common
data elements can be converted into reusable LS Records for use by a specific implementation.

This section defines the:

 LS Definition schema syntax

 LS Record schema syntax

 Rules for creating a Lean Services schema

3.1 Lean Services Schema Syntax

A Lean Services schema is described using JavaScript Object Notation (JSON), RFC 46271. A Lean
Services schema is a JSON-object that can contain JSON-objects, JSON-names and JSON-arrays.

A Lean Services attribute uses a JSON-name to describe a name/value pair.

3.1.1 Lean Services Schema Header Attributes

The Lean Services schema header attributes are the first attributes in a Lean Services schema.

"type" : "lsschematype",

"version" : "lsschemaversion"

"namespace" : "namespace",

"name" : "name"

lsschematype is either "lsdefinition" or "lsrecord" for service definitions.

The lsschemaversion in this document is "1.0".

namespace is a string stating the namespace of the service.

name is a string stating the name and version of the service.

3.1.2 Lean Services Definition Attributes

The Lean Services Definition attributes follow the Lean Services header schema attributes.

"lsservicetype" : "servicetype",

"parameters" : [dataparameters],

"response" : [dataparameters],

"error" : [dataparameters]

servicetype is either "CALL" for a Lean Services call or "EVENT" for a Lean Services event.

The parameters, response and error attributes contain one or more dataparameters, or

are null.

1
 http://tools.ietf.org/html/rfc4627

Lean Services Architecture Specification

Page 10 of 43 Version 2 Release

An LS Definition schema for a CALL:

{

"type" : "lsdefinition",

"version" : "1.0"

"namespace" : "namespace",

"name" : "name",

"lsservicetype" : "CALL",

"parameters" : [dataparameters],

"response" : [dataparameters],

"error" : [dataparameters]

}

An LS Definition schema for an EVENT:

{

"type" : "lsdefinition",

"version" : "1.0"

"namespace" : "namespace",

"name" : "name",

"lsservicetype" : "EVENT",

"parameters" : [dataparameters]

}

For a servicetype of "EVENT", if response and error attributes are present, they are to be ignored

by the implementation.

3.1.3 Lean Services Record Attributes

The Lean Services Record attributes follow the Lean Services header attributes.

"fields" : [dataparameters]

The fields attribute contains one or more dataparameters.

A LS Record schema:

{

"type" : "lsrecord",

"version" : "1.0"

"namespace" : "namespace",

"name" : "name",

"fields" : [dataparameters]

}

3.1.4 Lean Services Data Parameter

A Lean Services data parameter is a JSON-object containing one or more attributes. The first
attribute MUST be a Lean Services parameter name/parameter type attribute. LS Data Parameters
syntax:

{"parametername": "parametertype", ... further attributes ... }

3.2 Lean Services Data Parameter Types

3.2.1 Primitive Data Parameters

Function: To define a parameter type as a primitive.

Syntax example:

{"age": "int"}

Lean Services Architecture Specification

Page 11 of 43 Version 2 Release

Primitive types are:

 null: no value

 boolean: a binary value

 int: 32-bit signed integer

 long: 64-bit signed integer

 float: single precision (32-bit) IEEE 754 floating point number

 double: double precision (64-bit) IEEE 754 floating point number

 bytes: sequence of unsigned 8-bit bytes

 string: Unicode character sequence

3.2.2 Lean Services Record Data Parameter

Function: To define a parameter type as a LS Record.

Syntax example:

{"homeAddress": "ls.acmecorp.commontypes.addressrecord_v1_0"}

3.2.3 Enum Data Parameter

Function: To define a parameter type as enumerated.

The parameter type is "enum".

Further attributes:

 symbols: JSON-array of JSON-strings, mandatory. Duplicate names are prohibited.

Syntax example:

{"Seasons": "enum", "symbols": ["WINTER", "SPRING", "SUMMER", "AUTUMN"]}

3.2.4 Fixed Data Parameter

Function: To define a parameter type as a bytes field of fixed size.

The parameter type is "fixed".

Further attributes:

 size: integer specifying the number of bytes, mandatory.

Syntax example:

{"employeeid": "fixed", "size": 8}

3.2.5 Lean Services List Data Parameter

Function: To define a parameter type as an array of a primitive, LS Record or fixed data type.

The syntax of "list" is used followed by the parameter type enclosed in "<>" bracketing.

{"parametername": "list<parametertype>"}

Lean Services Architecture Specification

Page 12 of 43 Version 2 Release

A list may not immediately contain other lists.

Syntax examples:

{"daysoftheweek": "list<string>"}

{"listOfPackageDeliveries": "list<ls.acmecorp.commontypes.addressrecord_v1_0>"}

3.3 Rules for Lean Services Schemas

3.3.1 Overview

This section describes the rules to be followed for Lean Services schemas. The proper use of name
and namespaces is required to ensure the intended function of Lean Services by correctly
identifying and processing each Lean Services schema. The proper management of versioning is
required to ensure predictable backward and forward version compatibility.

3.3.2 Namespace and Name Rules

The following rules are mandated:

 A namespace is a series of names separated by a dot (.). The only permitted characters
used in a Lean Services schema namespace and schema name are a to z, 0 to 9. The
underscore (_) is used for versioning only.

 All namespace and name characters are treated as case insensitive in Lean Services and
must be converted to and processed as lower case by all implementation software.

 The first name in a Lean Services schema namespace must be ‘ls’.

 The namespace hierarchy starting ‘ls.messages’ is reserved for use in this specification only.

 ‘ls.messages.core’ is used for well-known calls.

 It is the responsibility of the schema owner to ensure that the namespace-name combination
is unique.

The following is advisory:

 It is suggested that a schema owner uses the name of the organisation they represent as the
second name in a namespace, e.g. ‘ls.moduk’ or ‘ls.companyname’. Further names can be
added to refine the namespace as required by the organisation.

 The names of the Lean Services schemas listed in this document are reserved for use in this
specification and should not be reused elsewhere.

3.3.3 Versioning Rules For Schemas, Calls and Events

3.3.3.1 Lean Services Schema Structure

The second attribute in a Lean Services schema is ‘version’. This describes the version of the
structure of the LS Definition and LS Record schema. This is defined as "1.0" by this document.

3.3.3.2 Lean Services Definition Schemas

The version of a defined ls call and ls event is appended at the end of the service name.

The version format is Underscore (_) + ‘v’ + major release number + Underscore (_) + minor
release number, with no spaces. If no version is present, the implementation treats as ‘_v1_0’.

A minor LS Definition release increment MUST maintain forward and backward compatibility with all
implementations using the same major release number.

If distribution of up to date schemas cannot be guaranteed within an implementation, then it is only
permitted to add attributes after existing attributes in the ‘parameters’, ‘response’ and ‘error’ sections
of an LS Definition for a minor release increment. This ensures that older schemas can be used to

Lean Services Architecture Specification

Page 13 of 43 Version 2 Release

read the message correctly because the extra attributes bytes only appear after the legacy
message when the message data is read.

If distribution of up to date schemas to all participants can be guaranteed, then more flexibility
can be offered using the minor increment versioning rules for a specific implementation.

A major release increment of an LS Definition can be made without consideration for compatibility
with previous version releases.

3.3.3.3 Lean Services Record Schemas

The version of a defined LS Record is appended at the end of the name.

The version format is Underscore (_) + ‘v’ + major release number + Underscore (_) + minor
release number, with no spaces. If no version is present, the implementation treats as ‘_v1_0’.

If up to date schema distributions cannot be guaranteed within an implementation, it is only
permitted to add attributes after existing attributes in the ‘fields’ section for a minor release
increment.

Advisory: LS Records are expected to be long lasting data types within any implementation. If
changes are required to an LS Record, it is usually expected to be a major version change only.
Such a change would also typically require all calls or events incorporating the new record type to
also be advanced by a major version change.

If a change is a minor version upgrade, and calls and events that use it are also provided with a
minor version upgrade only to incorporate then new type, then careful consideration to backward
compatible of the services must be given. This is because the new LS Record may insert extra data
into a message in such a way that older calls or event schemas may misread the message. Be
aware that it maybe necessary to distribute the new minor version call and event schemas to all
participants to ensure expected behaviour.

If distribution of up to date schemas to all participants can be guaranteed, then more flexibility
can be offered using the minor increment versioning rules for a specific implementation.

3.3.4 Service Fullname

The syntax for service fullname is namespace+(.)+name+version. E.g. The fullname for the

‘systemregistration’ service is ‘ls.messages.core.systemregistration_v1_0’.

Lean Services Architecture Specification

Page 14 of 43 Version 2 Release

4 Well-Known ls calls and ls events

4.1 Introduction

This section lists the core ls calls and ls events that are mandated for an implementation. They are
used in the interoperability relationship between systems on a platform2 and that platform’s Service
Registry. They are also used to achieve inter-platform interoperability. These are referred to as
‘well-known’ and their schemas, as well as a description of their functional behaviour, are specified
in this section.

4.2 Mandated ls calls and ls events

The following section explains the mandated ls calls and ls events that must be supported in the
Lean Services Architecture. The correct use of each call and event is explained in the next section.
The values used to populate parameters in some well known calls and events are informed by the
needs of specific implementations, so are not defined in this standard.

Table 1 lists mandated ls calls and whether a system, or the Service Registry (SR), or both, must
support the call.

LS Call System SR Description

NodeRegistration X Inform a system of the URI for the Service Registry
and the URI for events communications3

RegisterSystem X Add a system entry to the Service Registry

DeRegisterSystem X Remove a system entry from the Service Registry

ReturnSystemStatus X X Return the status of a system

ReturnAllServicesOverview X X Return the summary list of services available

ReturnServiceDetail X X Return the details of a specific service

RegisterService X Add a service entry to the Service Registry. Can be
used for adding transient services, such as short-lived
video streams.

DeregisterService X Remove a service entry from the Service Registry

ReturnServiceStatus X X Return the status of a service

RegisterInterestInEvent X A system registers to receive events matching
selection criteria

DeregisterInterestInEvent X A system de-registers event interest

ReturnEventsofInterest X Return all event-service associations

ReturnInterestInEvent X List all systems receiving events of a particular type

Table 1. Mandated Lean Services Calls

Table 2 lists the mandated Lean Services Events that must be issued by a system.

LS Event Name Description

SystemStatusUpdate Issued when a system has a status change

ServiceStatusUpdate Issued when a service has a status change

Table 2. Mandated System Issued Lean Services Events

2
 Platform in this document is a computational platform (e.g. a computer) and not necessarily a military platform (e.g. a

vehicle). It is considered that there should be only one Service Registry per platform.

3
 A component in an implementation must issue this call. This may or may not be the Service Registry.

Lean Services Architecture Specification

Page 15 of 43 Version 2 Release

Table 3 lists the mandated Lean Services Events that must be both issued and processed by the
Service Registry.

LS Event Name Description

PlatformAnnouncement Issued when a platform has a status change

SystemStatusUpdate Issued when a system has a status change

ServiceStatusUpdate Issued when a service has a status change

Table 3. Mandated Service Registry Events

The Service Registry issues system and status updates regarding its own state in the same manner
as any other system and will respond to a ReturnSystemStatus and ReturnServiceStatus about its
own status as it would for any other system.

4.3 Operation of the Architecture

4.3.1 Service Registry

Node Registration

Using persisted information, on the startup of the Service Registry, the Service Registry issues a
"noderegistration" call to each system to inform them about the node to use. The system is passed
the Service Registry URI and the URI of the Event Handler to use when issuing events. When a
Service Registry becomes aware of further systems, it makes a "noderegistration" call to each.

Note: the use of an automated system discovery technique is specific to an implementation. Such a
technique could automatically inform the Service Registry when a new system has connect with or
left the local network.

Populate the Service Registry

Next, to populate its database with the services provided by the systems, the Service Registry
issues the ls calls "returnservicesoverview" and "returnservicedetail to each system and persists the
returned data.

A system reports status changes in its operation and the status change of each of its call and event
services using events "systemstatusupdate" and "servicestatusupdate". The Service Registry
receives these events from the Event Handler and the status is persisted. A third party needing to
know the status of a system or service uses the call "returnsystemstatus" or "returnservicestatus" on
the Service Registry, which returns the last known information.

Note: rules regarding stale system and service information are specific to an implementation.

Remote Platform Registration

A Service Registry is informed of the presence of other nodes through the receipt of a
"platformannouncement" event. A platform Service Registry can query another remote Service
Registry for available services in the manner described above.

Note: rules regarding exchange of services information and regarding stale platform information are
specific to an implementation.

4.3.2 The Event Handler and Lean Services Events

A system sends events to the URI supplied in the "noderegistration” call. A logical function called
the Events Handler receives events. An event is re-distributed by the Events Handler to the URI for
each system that has made a "RegisterInterestInEvent" call that matches the event characteristics.
The Events Handler persists registrations and on re-start will continue to distribute events until
receiving a "DeRegisterInterestInEvent" call.

Note: rules regarding stale event registration information are specific to an implementation.

Lean Services Architecture Specification

Page 16 of 43 Version 2 Release

4.3.3 Designing and Implementing Services Suitable for Lean Environments

The design and implementation of a specific Lean Services Architecture should be appropriate to its
deployed environment and will vary. However the mandated calls and events MUST be supported
from the perspective of a system at a particular node. The loosely coupled nature of Lean Services
makes many existing techniques available for a system architect to exploit, including URI re-writing,
re-direction and proxies. A system architect can insert architectural components into an
implementation to provide these functions and other similar techniques.

The design of implementation-specific services should be appropriate to suit its deployed
environment. For example in highly bandwidth-constrained environments, the design of the services
should attempt to avoid verbose messages. Where it is unavoidable, it should use techniques to
deliver such messages in a manner that appears transparent to systems.

The method to fulfil the mandated services will vary due to the environment. For example, obtaining
the services provided by a remote Service Registries over low bandwidth links could be replaced
with a custom solution, to avoid carrying the volume of data. A custom solution could use the
‘platform type’ parameter from the "platformannouncement" event, and knowing the services on that
type of platform, could populate the local Service Registry without having to use unnecessary calls
to the remote platform.

4.4 Mandated Services

4.4.1 {noderegistration}

Description:

Sent by the Service Registry at a node to inform a system of the URI of the Service Registry and the
URI for events communications.

Schema:

{

"type" : "lsdefinition",

"version" : "1.0"

"namespace" : "ls.messages.core",

"name" : "noderegistration",

"lsservicetype" : "CALL",

"parameters" : [

 {"sruri" : "string"},

 {"srguid": "string"},

 {"eventsuri": "string"},

],

"response" : null,

"error" :

 [

 {"error" : "ls.messages.core.lserror"}

]

}

Parameter
Name

Usage

sruri The URI of the Service Registry.

srguid The Service Registry may optionally provide a Globally Unique Identifier
(GUID).

eventsuri All events issued by the system are to be sent to the URI in eventsuri.

Lean Services Architecture Specification

Page 17 of 43 Version 2 Release

4.4.2 {registersystem}

Description:

Registers a system with the Service Registry. Following the registration, the Service Registry can
query the system for services. Each system MUST have a unique URI.

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "registersystem",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"system" : "ls.messages.core.systeminfo"}

],

 "response":

 [

 {"success" : "boolean"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

Parameter Name Usage

system Systeminfo record

success Success or failure of registration

{ls.messages.core.systeminfo}

{

 "type":"lsrecord",

 "version":"1.0",

 "namespace":"ls.messages.core",

 "name":"systeminfo",

 "fields":[

{"uri" : "string"},

{"systemtype" : "string"},

 {"name" : "string"},

 {"description" : "string"}

]

}

Parameter Name Usage

uri The URI of the system

systemtype Type of system. The value is informed by the implementation.

name Name of the system

description Succinct human readable description of the system’s primary business function

4.4.3 {deregistersystem}

Description:

Lean Services Architecture Specification

Page 18 of 43 Version 2 Release

Deregisters a system with the Service Registry. The service entries for the system can be removed
from the Service Registry.

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "deregistersystem",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"uri" : "string"}

],

 "response":

 [

 {"success" : "boolean"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

Parameter Name Usage

uri The URI of the system

4.4.4 {returnsystemstatus}

Description:

Describes the current state of a system by returning a list of named states with true/false values and
an optional textual message.

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "returnsystemstatus",

 "lsservicetype" : "CALL",

 "parameters": null,

 "response":

 [

 {"statuses" : "List<ls.messages.core.genericstatusupdate>"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

Lean Services Architecture Specification

Page 19 of 43 Version 2 Release

{genericstatusupdate}:

{

 "type":"lsrecord",

 "version":"1.0",

 "namespace":"ls.messages.core",

 "name":"genericstatusupdate",

 "fields":[

 {"statusname" : "string"},

 {"stringdata" : "string"},

 {"booleandata" : "boolean"}

]

}

Parameter
Name

Usage

statusname The name of the status

booleandata Whether the status described in statusname is true or false

stringdata Optional. A general-purpose message regarding the state, intended for human
consumption.

The genericstatusupdate record is a status name and boolean pairing, with the Boolean value
indicating whether the status is true or false.

There are two mandated statusname values to be supported by a Lean Services implementation,
"systemactive" and "systemmessage".

"systemactive", with a booleandata of true or false, is used to communicate the operational
availability of the primary business function of the system.

"systemmessage" is used to return a succinct human readable message. When used, booleandata
is set to true and the stringdata parameter is populated with a human readable message.

The use of additional statusname values is informed by the implementation.

4.4.5 {returnallservicesoverview}

Description:

Return a summary list of services.

Schema:

{

"type" : "lsdefinition",

"version" : "1.0"

"namespace" : "ls.messages.core",

"name" : "returnallservicesoverview",

"lsservicetype" : "CALL",

"parameters" : null,

"response" : [

 {"services" : "list<ls.messages.core.serviceoverview>"}

],

"error" :

 [

 {"error" : "ls.messages.core.lserror"}

]

}

Lean Services Architecture Specification

Page 20 of 43 Version 2 Release

{serviceoverview} record:

{

"type" : "lsrecord",

"version" : "1.0"

"namespace" : "ls.messages.core",

"name" : "serviceoverview",

"fields" : [

 {"servicefullname" : "string"},

 {"uri" : "string"},

 {"servicetype" : "string"},

],

}

Parameter Name Usage

servicefullname The fullname of the service

uri The URI of the service

servicetype A definition of the type of service. The value is informed by the implementation

4.4.6 {returnservicedetail}

Description:

Return the detail of a specific service.

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "returnservicedetail",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"servicefullname" : "string"},

 {"uri" : "string"}

],

 "response":

 [

 {"servicedetail" : "ls.messages.core.servicedetail"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

Lean Services Architecture Specification

Page 21 of 43 Version 2 Release

{servicedetail} record

{

 "type":"lsrecord",

 "version":"1.0",

 "namespace":"ls.messages.core",

 "name":"servicedetail",

 "fields":[

 {"servicefullname" : "string"},

 {"servicetype" : "string"},

 {"systemtype" : "string"},

 {"description" : "string"},

 {"uri" : "string"},

 {"luid" : "string"},

 {"schemafullname" : "string"},

 {"servicedefinition" : "string"}

]

}

Parameter Name Usage

servicefullname The fullname of the service

servicetype A definition of the type of service. The value is informed by the
implementation

systemtype A definition of the primary business function of the system providing the
service. The value is informed by the implementation

description A succinct human-readable description of the service

uri The URI of the service

luid The luid (locally unique ID) parameter is reserved for future use.

schemafullname The full name of the schema

servicedefinition The schema

4.4.7 {registerservice}

Description:

Add a service entry to the Service Registry. Available for adding transient services, such as short-
lived video streams.

Duplicate service URIs must be rejected by the Service Registry.

Lean Services Architecture Specification

Page 22 of 43 Version 2 Release

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "registerservice",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"servicefullname": "string"},

 {"uri" : "string"},

 {"servicetype" : "string"}

],

 "response":

 [

 {"success" : "boolean"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

Parameter Name Usage

servicefullname The fullname of the service

uri The URI of the service

servicetype A definition of the type of service. The value is informed by the implementation

4.4.8 {deregisterservice}

Description:

Remove a service entry from the Service Registry.

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "deregisterservice",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"servicefullname" : "string"},

 {"uri" : "string"}

],

 "response":

 [

 {"success" : "boolean"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

Parameter Name Usage

servicefullname The fullname of the service

uri The URI of the service

Lean Services Architecture Specification

Page 23 of 43 Version 2 Release

4.4.9 {returnservicestatus}

Description:

Return the status of a service.

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "returnservicestatus",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"servicefullname" : "string"},

 {"uri" : "string"}

],

 "response":

 [

 {"status" : "ls.messages.core.servicestatus"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

{servicestatus}

{

 "type":"lsrecord"

 "version":"1.0",

 "namespace":"ls.messages.core",

 "name":"servicestatus",

 "fields":[

{"servicefullname" : "string"},

 {"uri" : "string"},

 {"status" : "string"},

 {"statustext" : "string"}

]

}

Parameter Name Usage

servicefullname The fullname of the service

uri The URI of the service

status A summary status. Informed by the implementation.

statustext Optional. Human readable and succinct.

4.4.10 {registerinterestinevent}

Description:

Request to receive subsequent events matching the event interest parameters. The requestor is the
source in the wrapper.

The return Boolean value is true if processed successfully.

Lean Services Architecture Specification

Page 24 of 43 Version 2 Release

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "registerinterestinevent",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"assoc" : "ls.messages.core.eventinterest"}

],

 "response":

 [

 {"success" : "boolean"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

{eventinterest} schema:

{

 "type":"lsrecord",

 "version":"1.0",

 "namespace":"ls.messages.core",

 "name":"eventinterest",

 "fields":[

 {"eventfullname" : "string"},

 {"eventuri" : "string"}

]

}

Parameter Name Usage

eventfullname The fullname of the event

eventuri URI of the event source

4.4.11 {deregisterinterestinevent}

Description:

Cancels a register interest request.

Lean Services Architecture Specification

Page 25 of 43 Version 2 Release

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "deregisterinterestinevent",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"assoc" : "ls.messages.core.eventinterest"}

],

 "response":

 [

 {"success" : "boolean"}

],

 "error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

4.4.12 {returneventsofinterest}

Description:

Return all event-to-service associations.

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "returneventsofinterest",

 "lsservicetype" : "CALL",

 "parameters": null,

 "response":

 [

 {"associations" : "List<ls.messages.core.eventinterest>"}

],

"error":

 [

 {"error" : "ls.messages.core.lserror"}

]

}

4.4.13 {platformannouncement}

Description:

Event issued to inform of the presence or change of status of a node. On receipt of a platform
announcement, a platform announcement event is returned to the source URI.

Lean Services Architecture Specification

Page 26 of 43 Version 2 Release

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "platformannouncement",

 "lsservicetype" : "EVENT",

 "parameters":

 [

 {"nodeid" : "string"},

 {"platformtype" : "string"},

 {"nodeuri" : "string"},

 {"status" : "string"}

]

}

Parameter Name Usage

nodeid The id of the platform. Must be unique for each platform. Informed by the
implementation.

platformtype The type of platform. Informed by the implementation.

nodeuri The URI of the platform. This represents a URI for the platform’s Service
Registry, to allow service information to be remotely queried.

status A summary status for the platform. Informed by the implementation

4.4.14 {lserror}

Description:

Error message used within the core architecture.

Schema:

{

"type" : "lsrecord",

"version" : "1.0"

"namespace" : "ls.messages.core",

"name" : "lserror",

"fields" : [

{"errortype" : "enum", "symbols":

["NOTSUPPORTED","CALLERROR","SYSTEMERROR","DELIVERYFAILURE"]},

 {"message" : "string"}

]

}

Parameter Name Usage

errortype The type of error.
NOTSUPPORTED – The call is not supported by the device. Includes calls
made using the wrong major version number.
CALLERROR – The system has reported an error while processing the call
SYSTEMERROR – The architecture reports that the call was delivered to the
system, but the system was unavailable
DELIVERYFAILURE – The architecture reports that the message could not be
delivered.

message Optional. A succinct summary of the error for human consumption

Lean Services Architecture Specification

Page 27 of 43 Version 2 Release

4.4.15 {systemstatusupdate}

Description:

Issued when a system status changes.

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "systemstatusupdate",

 "lsservicetype" : "EVENT",

 "parameters":

 [

 {"systemuri" : "string"},

 {"statuslist" : "list<ls.messages.core.genericstatusupdate>"}

]

}

Parameter Name Usage

systemuri The URI of the system issuing the status update.

statuslist A list of genericstatusupdate records that describe the current system status

4.4.16 {servicestatusupdate}

Description:

Issued when a service status changes.

Schema:

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.messages.core",

 "name" : "servicestatusupdate",

 "lsservicetype" : "EVENT",

 "parameters":

 [

 {"status" : "ls.messages.core.servicestatus"}

]

}

Parameter Name Usage

status A service status record

Lean Services Architecture Specification

Page 28 of 43 Version 2 Release

5 Lean Services Message Generation

The technique used to exchange data with a Lean Services interface is a Lean Services message
contained in a Lean Services wrapper.

The Lean Services wrapper provides the source, destination and return URI information and time of
message assembly to allow delivery systems to carry the message without needing knowledge of
the content. The carried Lean Services messages are then simpler in structure, as well as providing
a future upgrade path to incorporate features such as security and safety features within a wrapper
message.

All generated Lean Services messages use the schema type lsbase, and MUST use the

serialisation method specified by Apache Avro version 1.7.5.

This section specifies the lsbase schemas for the Lean Services wrapper, call and event, and

defines the transformation from a lsbase schema to a valid Avro schema.

5.1 lsbase Schema for Lean Services Call

The Lean Services call request, response and error messages are generated using the following

lsbase schema.

Schema:

{

 "type" : "lsbase",

 "version" : "1.0",

 "namespace" : "ls.messages.base",

 "name" : "lscall",

 "parameters":

 [

 {"servicefullname" : "string"},

 {"type": "enum", "symbols" : ["EVENT", "REQUEST", "RESPONSE",

"ERROR"]},

 {"callcontext" : "string"},

 {"parameters" : dataparameters}

]

}

servicefullname is populated using the LS Definition schema namespace and name attributes.

lsmessagetype defines the type of message being carried. This MUST be set to either REQUEST

for a call request, RESPONSE for a call response or ERROR for a call error message. EVENT is
not selected for a call but must be included here to allow generation and reading of an event binary
message to occur correctly.

callcontext is populated when preparing a Lean Services call request, to allow the caller to

associate a subsequently received RESPONSE or ERROR message with the original call
REQUEST message. All Lean Services call responders MUST populate the RESPONSE or ERROR

message with the same callContext provided by the issuer in the REQUEST message.

dataparameters is populated from the LS Definition, using the parameters attributes for a

REQUEST, the response attributes for a RESPONSE or the error attributes for an ERROR.

A call with a schema response of null MUST return a response. If no response is required to a
message, then an event would be used instead.

5.2 lsbase Schema for Lean Services Event

The schema for a Lean Services event is almost identical to the call, except there is no ‘callcontext’
attribute.

Lean Services Architecture Specification

Page 29 of 43 Version 2 Release

Schema:

{

 "type" : "lsbase",

 "version" : "1.0",

 "namespace" : "ls.messages.base",

 "name" : "lsevent",

 "parameters":

 [

 {"servicefullname" : "string"},

 {"type": "enum", "symbols" : ["EVENT"]},

 {"parameters" : dataparameters}

]

}

servicefullname is populated using the LS Definition schema namespace and name attributes.

lsmessagetype is set to EVENT.

dataparameters is populated from the parameters attributes of the LS Definition.

5.3 lsbase Schema for Lean Services Wrapper

A Lean Services message is passed to a Lean Services interface inside a Lean Services wrapper.

Schema:

{

 "type" : "lsbase",

 "version" : "1.0",

 "namespace" : "ls.messages.base",

 "name" : "lswrapper",

 "parameters":

 [

 {"messagetype": "enum", "symbols" : ["LSWRAPPER", "LSCALL",

"LSEVENT"]},

 {"zulutime-iso8601compact" : "string"},

 {"sourceURI" : "string"},

 {"destinationURI" : "string"},

 {"returnURI" : "string"},

 {"message" : "bytes"},

]

}

The messagetype parameter MUST match the message type being carried.

A Lean Services wrapper may contain a Lean Services wrapper to allow future specification
implementation flexibility in delivery and provide available extensions for security and safety. This
matches architectural patterns used elsewhere.

The assembly time of the wrapper message MUST be included in the Lean Services wrapper and is
always recorded as Zulu time (Greenwich Mean Time). The presentation of the time uses UTC
standard ISO 86014, with dashes and colons removed, i.e., YYYYMMDDHHMMSS.

For a Lean Services call REQUEST, the URI of the service is the destination, the return URI is
where the call response or error is to be sent (usually the originator of the call). The Source URI is
the originator of the call or event.

For a Lean Services call RESPONSE and ERROR, the URI of destination is the return URI from the
original call request. The Return URI is not set. The Source URI is the responding URI.

4
 http://www.iso.org/iso/catalogue_detail?csnumber=40874

Lean Services Architecture Specification

Page 30 of 43 Version 2 Release

For a Lean Services event, the destination URI is the recipient’s URI. The return URI is not set. The
Source URI is the originator of the event.

message contains a generated Lean Services message or wrapper.

5.4 Lean Services Schema to Avro Schema Translation

To use an Avro-compatible software library to generate and/or de-serialise binary Lean Services
messages, the substitutions and attribute syntax conversions from a Lean Services schema to a
valid Avro schema are listed in this section.

5.4.1 Lean Services lsbase Schema Header

Lean Services Schema Representation
 "type":"lsbase",

 "version":"1.0",

 "namespace":"namespace",

 "name":"name",

 "parameters":

Avro Schema Representation
 "type":"record",

 "name":"namespace+name",

 "fields":

5.4.2 Lean Services Record Schema Header

Lean Services Schema Representation
 "type":"lsrecord",

 "version":"1.0",

 "namespace":"namespace",

 "name":"name",

 "fields":

Avro Schema Representation
 "type":"record",

 "name":"namespace+name",

 "fields":

5.4.3 Lean Services Name/Type Attribute

Lean Services Schema Representation
"parametername": "parametertype"

Avro Schema Representation
"name": "parametername", "type": "parametertype"

5.4.4 Lean Services Name/Type - List Attribute

Lean Services Schema Representation
"parametername": "list<parametertype>"

Avro Schema Representation
"name": "parametername", "type": "array", "items": "parametertype"

5.4.5 Lean Services Null Type Attribute

Lean Services Schema Representation
"parametername": null

Avro Schema Representation
"parametername": null

Lean Services Architecture Specification

Page 31 of 43 Version 2 Release

5.4.6 Lean Services Enum Type - Symbols Attribute

Lean Services Schema Representation
"symbols": [JSON Array of JSON Strings]

Avro Schema Representation
"symbols": [JSON Array of JSON Strings]

5.4.7 Lean Services Fixed Type - Size Attribute

Lean Services Schema Representation
"size": numberofbytes

Avro Schema Representation
"size": numberofbytes

The Lean Services namespace and name are concatenated with a dot (.) into the name attribute of
the Avro record.

A Lean Services Definition may comprise of attributes that contain one or more LS Records. An
Avro schema is always a single file, so the primitive attributes of all LS Records are concatenated
(once transformations and substitutions listed above are applied), along with the individual primitive
and list attributes in the definition. This creates a single set of attributes in the fields section of the
final Avro schema. The attributes must be in the same sequence as the original Lean Services
Definition to be processed correctly.

The Avro types of Map and Union are not used by Lean Services.

Lean Services Architecture Specification

Page 32 of 43 Version 2 Release

6 Transport Protocols

6.1 Mandated Transport Protocols

Lean services are transport protocol agnostic. However HTTP is the mandated transport protocol
that MUST be supported by an implementation. It is used to ensure that interoperability is always
possible between implementations, regardless of the chosen transport protocols used within
implementations.

HTTP interoperability can be provided either by making every component support HTTP as well as
each of the other implementation-specific chosen transport protocols, or by providing Gateways to
convert between protocols.

6.2 Uniform Resource Indicator Syntax

The Uniform Resource Indicator (URI) is a string that describes the means to access a resource.
The URI scheme name defines the scheme protocol to be used, followed by a hierarchy that
uniquely identifies the resource for the protocol.

The URI for each service is persisted in the Service Registry along with a Lean Services Definition,
so defining how to access the service and the data exchange with the service.

6.3 HTTP Transport Protocol

6.3.1 HTTP URI Specification

The scheme name is ‘http://’.

The hierarchy is the host name or IP address (optional port number), followed by a path to the
resource, e.g. http://192.168.0.55:80/ls/handling/local.

6.3.2 HTTP Usage with Lean Services

The HTTP implementation MUST support HTTP 1.15 as a minimum, using MIME Base64 encoding
for Lean Services messages in the HTTP message body. There are two communications patterns
using HTTP with Lean Services. One is the Lean Services call mechanism used between systems
and the other is the Lean Services event mechanism, which distributes Lean Services events to
systems.

6.3.3 Call Mechanism

The calling system is the HTTP client and the recipient system is the HTTP server.

A Lean Services call request is sent as an HTTP POST message that includes the HTTP header
fields of ‘Content-Length’, ‘Content-Type’ and ‘Host’, and the message body. Content length is set
to the length of the encoded Lean Services message in the message body. Content type is set to
‘application/x-ls’. Host is set to the URI provided by the Service Registry.

A reply that returns a Lean Services call response or error uses an HTTP response status code of
‘200 OK’. Content length is set to the length of the encoded Lean Services message in the message
body. Content type is set to ‘application/x-ls’.

5
 https://tools.ietf.org/html/rfc7230

http://192.168.0.55/ls/handling/local

Lean Services Architecture Specification

Page 33 of 43 Version 2 Release

6.3.4 Event Mechanism – From System to Event Handler

The Event Handler is a component that distributes events. It receives events issued by systems and
distributes them to subscribing systems.

The Event Handler is the HTTP client and the system issuing a Lean Services event is the HTTP
server. The event mechanism uses HTTP long polling.

The Event Handler initiates a long polling session sent as an HTTP POST containing the text
‘StartLongPolling’ in the message body and content type set to ‘text/plain’.

When the system has a Lean Services event to issue, the system uses an HTTP response status
code of ‘200 OK’, with content Length set to the length of the encoded Lean Services event in the
message body and content type set to ‘application/x-ls’.

If no event message is returned after a long polling timeout of 20 seconds, the client closes the
HTTP session and immediately re-initiates a long polling session.

6.3.5 Event Mechanism –From Event Handler to System

The Event Handler is the HTTP client and the system receiving the Lean Services event is the
HTTP server.

The event is sent by the Event Handler to the system using the HTTP POST as described in Section
6.3.3. The system replies using an HTTP response status code of ‘200 OK’ containing an empty
body and content type set to ‘application/x-ls’.

Lean Services Architecture Specification

Page 34 of 43 Version 2 Release

1 Appendix A – Barrier Validation Rules

1.1 Overview

The Lean Services Architecture (LSA) is a schema-based request/response and event message
protocol and supporting architecture designed to provide the features of a Services Orientated
Architecture (SOA) in the operational and tactical military domain, or other similar environments
using an implementation more suited to such conditions than existing solutions.

Different Trust Domains are domains that are either at different security classifications, or domains
that have different management and ownership. To allow Lean Services messages to cross
between Trust Domains it maybe necessary to check the message content in detail. This is to
ensure that malicious data does not enter a domain and that unapproved data does not leave a
domain.

A Barrier performs the checks. This specification defines the syntax that describes the checks that
must be performed by the Barrier on each Lean Services message that is being moved between
Trust Domains.

Two syntaxes are defined.

1. LPath, a language to allow a Lean Services message to be queried to return the data held
by a specific field, and;

2. Barrier Validation Rules, an XML-based syntax defining the exact checks to be performed on
a specific field.

A Barrier running Barrier Validation Rules can comprehensively check and validate the content of
defined Lean Services messages to prevent malicious or inappropriate data from crossing between
domains.

1.2 Barrier Validation Rules Summary

A Lean Services message is either a call or an event. Both Lean Services calls and events are
defined using a schema called a Lean Services Definition. The schema namespace plus name plus
version number provides a unique fully qualified name for every Lean Services message, allowing
the Barrier to identify the message and apply the correct checks.

Barrier Validation Rules (BVR) are loaded onto the Barrier. There is one BVR for each Lean
Services message schema used. The Barrier also has a copy of each Lean Services schema used.
If a Lean Services message arrives that has no corresponding BVR and/or schema, then the
message is rejected.

The BVR defines the checks to be performed on the content of the received message. Using both
the schema and the BVR, the Barrier can determine if the data received:

 Is a correctly formatted Lean Services message as defined by the schema

 Has contents within the approved parameters of the BVR

A successful check allows the message to progress. A failed check will quarantine the message or
perform other business activities as required by the accreditation.

1.3 Objective of this Specification

This specification defines the LPath and BVR syntax required to provide content check solutions,
and Barrier systems, with sufficient information to allow comprehensive and robust content checking
to occur. The specification follows the spirit of Lean Services in that it must be easy to read and
understand and will require no unusual computer programming knowledge to implement.

The syntax is openly described to allow for use with any content check solution. A particular content
check solution has 3 different ways to use BVRs:

Lean Services Architecture Specification

Page 35 of 43 Version 2 Release

 The BVR is used natively by the content checker as its content check syntax, allowing the
BVR to be loaded directly on a Barrier and used without further conversion, allowing highest
dynamism;

 The BVR is converted into a another content check syntax (requiring a post-process
function) before being loaded onto a Barrier;

 The BVR is converted directly into software code, providing a static solution.

2 LPath Language

2.1 Context of Operation

LPath is a Lean Services message query language based on the principles of XPath6, which is used
to query XML documents. It uses the root position in a particular Lean Services schema as its
starting point, follows a path through one or more schemas to its destination and returns the value.
The language syntax can be extended as needed in the future. For the current specification, it is
only necessary to return the value of a single field at a time.

2.2 Using LPath

To identify and extract a field value from a message, an LPath processor, which performs the LPath
query, requires:

 A generated Lean Services message (a binary serialised message)

 The Lean Services schemas defining the contents of the message

 An LPath statement to identify a field to be read.

A processor utilises LPath to extract a field value from a Lean Services message by reading a path
and using the appropriate Lean Services schema(s) to follow the path to its intended destination
and returning the value.

A request, response, error and event message are delivered in a wrapper. If the message is still in
the wrapper when being processed, then the path, starting at the root position of the wrapper, needs
the wrapper and the message schemas, as well as any further schemas used by the message.

If the message has been extracted from the wrapper, then the path must start at the message
schema root.

For the purposes of BVRs, the root value of the Definition is the start of the path of an event or call,
so the top level is ‘parameters’, ‘response’ or ‘error’. The path then extends from that point down the
hierarchy of the Lean Services schema(s) until it reads the required field.

2.2.1 LPath Syntax to Read a Primitive Field

For the Lean Services definition in Example 1, to access the integer of value1 or 2 requires a very
short path, e.g., “parameters/value1”, which will return the integer value of value1.

6
 http://www.w3.org/TR/xpath/

Lean Services Architecture Specification

Page 36 of 43 Version 2 Release

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.2ic.exp",

 "name" : "exampleeventschema_v1_0",

 "lsservicetype" : "EVENT",

 "parameters":

 [

 {"value1" : "int"},

 {"value2" : "int"},

 {"person" : "ls.2ic.exp.record.person_v1_0"}

]

}

Example 1. Sample Lean Services Event Definition.

If the type of a field is Lean Services Record, such as the ‘person’ field, then to read a primitive field
in the record requires extending the path statement. The processor also needs to have the relevant
Lean Services Record schema (see Example 2).

{

 "type" : "lsrecord",

 "version" : "1.0",

 "namespace" : "ls.2ic.exp.record",

 "name" : "person_v1_0",

 "fields":

 [

 {"firstname" : "string"},

 {"lastname" : "string"},

 {"age/years" : "int"}

]

}

Example 2 Sample Lean Services Record 1.

E.g., “parameters/person/lastname”. The lastname string value will be returned.

If the field name includes a forward slash then the field name MUST be placed in single quotes in
the LPath statement.

E.g., “ parameters/person/’age/years’ ” will return the integer value of the field “age/years”.

2.2.2 LPath Syntax to Read a Record Field

To return a record field, the path to the record is used. E.g. “parameters/person”. The return is the
binary message containing the populated person record. This binary can then be checked using the
record field type checks.

2.2.3 LPath Syntax to Read a List Field

To access a list field, the same approach is used as for a record field. See Example 3.

{

 "type" : "lsdefinition",

 "version" : "1.0",

 "namespace" : "ls.2ic.exp.call",

 "name" : "fetchListOfStaffatLocation_V1_0",

 "lsservicetype" : "CALL",

 "parameters":

 [

 {"Location" : "string"}

],

 "response":

 [

 {"staff" : "list<ls.2ic.exp.record.person_v1_0>"}

],

 "error": null

}

Lean Services Architecture Specification

Page 37 of 43 Version 2 Release

Example 3 Sample Lean Services Call Definition.

E.g. “response/staff” will return the binary containing the list of person records meeting the request
parameter. The binary can then be checked using list field type checks.

3 Barrier Validation Rule Syntax

3.1 Overview

The principles used to design the BVR syntax:

1) BVR syntax is simple to read.

a. Lean Services messages should be compact, tactical and ‘lean’ in design, the
messages should rarely be very complex, since that would place a load on the
tactical communications network, processing computers and the software design and
implementations. As such, the syntax of the BVR definition should be similarly simple
& compact and allow a human to review the majority of BVRs without tool assistance.
This will assist accreditation cases.

b. A simple XML format is used to define BVRs and is defined in this specification.

2) Version 1 of BVRs will support single field validation only.

a. Lean Services message design should tend to the approach that rather than
overloading an existing Lean Services message with additional fields for a new
situation, instead a new service should be designed. As such, optional fields should
rarely, if ever, be required, since their use can introduce ambiguity in interpretation
for implementations. The introduction of a new service in Lean Services, and SOAs
in general, is a trivial act and much more straightforward than introducing consistency
rules about the contents of a message. However a cross-field validation syntax
extension can be subsequently introduced if required.

b. Note: it is possible that the Lean Services Architecture Specification may require
additional syntax describing both optional fields and cross-field data completion rules
in the future. Developing a cross-field validation syntax leveraging such work could
provide greater continuity.

3) The syntax must avoid any proprietary or patented techniques, allowing open use by any
party.

3.2 Sections of the BVR

3.2.1 Header

A BVR is made up of:

 A header; identifies the BVR, issue number and the ls schema it is used against.

 Checks; containing one or more individual checks each against individual lean services
parameters.

Lean Services Architecture Specification

Page 38 of 43 Version 2 Release

Example 4 shows the BVR header.

<bvr>

 <syntaxversion>1.0</syntaxversion>

 <schemafullname>ls.2ic.dop.inprogress.dop.2ic.exp.locationpos.m1.3</schemafullname>

 <bvrzulutimeofissue>20140912130752</bvrzulutimeofissue>

 <bvrissuenumber>3</bvrissuenumber>

 <messageminsize>178</messageminsize>

 <messagemaxsize>260</messagemaxsize>

Example 4 BVR Header.

Name Usage

syntaxversion Set to 1.0 for the released specification

schemafullname The fully qualified name of the Lean Services schema that the
BVR checks. This is namespace plus name plus (optional)
version number

bvrzulutimeofissue ISO 8601 time with spaces removed, no Z required at end.
The date and time of the BVR release

bvrissuenumber The issue number of the BVR. This is incremented each time
a new BVR for a particular schema is issued. The term
“version” has been deliberately avoided. A version number
implies you should always use the latest, which may not be
the case for a BVR.

messageminsize The minimum number of bytes for the entire message

messagemaxsize The maximum number of bytes for the entire message

Table 1. BVR Header Description.

3.2.2 Checks

3.2.3 Checks Header

 <checks>

 <check type=”_TYPE_OF_CHECK_”>

 <fieldpath lpath=”/parameters/dopserviceid”>

Example 5 BVR Checks Header

Name Usage

checks Contains all the individual checks contained in the BVR

check An individual check

Check options type The type of field check being applied

Fieldpath The field to be checked

fieldpath options lpath The LPath syntax defining the Lean Services field being
checked

Table 2. BVR Checks Header Description.

Lean Services Architecture Specification

Page 39 of 43 Version 2 Release

Checks follow the BVR header. Each check applies to a single field and allows a specific type of
check to occur against a parameter, whether a primitive, enumerated, record or list type. Checks are
added in turn, and behave as AND operators. Every check must pass.

Within a check, one or more field constraints can be applied. The field constraints behave as AND
operators, so within a check every field check must pass.

The definitions of the field checks that can be assigned to each field type are listed below.

3.2.4 String

The type of check is ‘string’.

Field Check Name Description

MinLength The minimum length of the string

MaxLength The maximum length of the string

Format ‘ALPHA’ or ‘NUMERIC’ or ‘MIXED’.

Case ‘UPPER’ or ‘LOWER’ or ‘BOTH’. ‘Both’ means that both
upper and lower case are permitted.

Permitted options casesensitive List of permitted words, with the option of casesensitive being
‘TRUE’ or ‘FALSE’

Forbidden options casesensitive List of forbidden words, with the option of casesensitive being
‘TRUE’ or ‘FALSE’

Regex A regular expression query.

Table 3. String Type Check Description.

 <check type=”string”>

 <fieldpath lpath=”/parameters/manufacturerName”>

 <minlength>2</minlength>

 <maxlength>50</maxlength>

 <format>MIXED</format>

 <case>BOTH</case>

 </fieldpath>

 </check>

Example 6 Checking a string field type.

<check type=”string”>

 <fieldpath lpath=”/parameters/powerStatus”>

 <permitted casesensitive=”TRUE”>

 <value>ON</value>

 <value>OFF</value>

 </permitted>

 </fieldpath>

 </check>

Example 7 Checking the permitted values of a string field type.

Lean Services Architecture Specification

Page 40 of 43 Version 2 Release

3.2.5 Int, Long, Float and Double

The type of check is ‘int’ or ‘long’.

Field Check Name Description

MinValue The minimum value

MaxValue The maximum value

Permitted List of permitted values

Forbidden List of forbidden values

Table 4. Int, Long, Float and Double Type Check Description.

3.2.6 Boolean

The type of check is ‘boolean’.

Field Check Name Description

Permitted The permitted value, either true or false (case insensitive)

Table 5. Boolean Type Check Description.

<check type=”boolean”>

 <fieldpath lpath=”/parameters/systemActive”>

 <permitted>TRUE</permitted>

 </fieldpath>

 </check>

Example 8 Checking the value of a boolean field type.

3.2.7 Enumerated

The type of check is ‘enumerated’.

Field Check Name Description

Permitted List of permitted values (case insensitive)

Forbidden List of forbidden values (case insensitive)

Table 6. Enumerated Type Check Description.

<check type=”enumerated”>

 <fieldpath lpath=”/parameters/platformType”>

 <permitted>

 <value>SOLDIER</value>

 <value>VEHICLE</value>

 <value>BASE</value>

 <value>UAV</value>

 <value>UGS</value>

 </permitted>

 </fieldpath>

 </check>

Example 9 Checking the permitted values of an enumerated type.

3.2.8 Bytes

The type of check is ‘bytes’.

Lean Services Architecture Specification

Page 41 of 43 Version 2 Release

Field Check Name Description

MinSize The minimum size of the bytes field

MaxSize The maximum size of the bytes field

ContentType Validate the bytes content is of the type expected.

Table 7. Bytes Type Check Description.

ContentType informs the Content Checker that the bytes field contains a type of content that
requires validation. It is proposed that the type name is held in namespace-style syntax, with an
initial broad category with refinement to a precise type for checking.

Type Name Description

image.jpeg A JPEG image

image.jpeg.stanag4545 A JPEG image containing STANAG 4545 metadata

image.tiff A TIFF image

document.pdf A PDF document

Table 8. Example of Content Type Names.

3.2.9 Lean Services Record Field Type

A record field type contains a Lean Services Record. While using LPath you can define a path that
reads down to the individual primitive fields within the record, content checking may wish to check
the number of bytes used by the record at field level.

Field Check Name Description

MinSize The minimum byte size of the record

MaxSize The maximum byte size of the record

Table 9. Complex Type Check Description.

3.2.10 List Field Type

The type of check is ‘list’.

A list field type contains a list of primitive or complex types and is used when it is not known at Lean
Services schema design time how many items will be present, so cannot be pre-defined using
schema fields. A typical use would be a list containing a variable number of items depending on a
database query response.

Field Check Name Description

MinItems The minimum number of items in the list

MaxItems The maximum number of items in the list

MinSize The minimum total byte size of the list

MaxSize The maximum total byte size of the list

MinItemSize The minimum byte size of a single item in the list

MinItemSize The maximum byte size of a single item in the list
Table 10. List Type Check Description

To determine the size of the individual items in the list, the items must be iterated through by the
content checker and individually validated. The content check will identify from the schema and
BVR that the field is a list. The content checker will iterate through each item in the list, performing
the field level check on every item, whether primitive or complex.

Lean Services Architecture Specification

Page 42 of 43 Version 2 Release

<check type=”list”>
 <fieldpath lpath=”/response/listofPersons”>
 <minitems>1</minitems>
 <maxitems>10</maxitems>

 <check type=”string”>
 <fieldpath lpath=”/response/listofPersons/firstname”>

 <minlength>2</minlength>
 <maxlength>50</maxlength>

 <alphanumeric>ALPHA</alphanumeric>

 <case>UPPER</case>

 </check>

 <check type=”string”>
 <fieldpath lpath=”/response/listofPersons/lastname”>

 <minlength>2</minlength>
 <maxlength>50</maxlength>

 <alphanumeric>ALPHA</alphanumeric>

 <case>UPPER</case>

 </check>

 <check type=”int”>
 <fieldpath lpath=”/response/listofPersons/age”>

 <minvalue>0</minvalue>
 <maxvalue>120</maxvalue>

 </check>

 </fieldpath>

 </check>

Example 10 Checking permitted values within a List iteration function.

A future version of LPath could provide a syntax giving greater query control within a list, allowing
specified items to be accessed and checked individually.

Lean Services Architecture Specification

Page 43 of 43 Version 2 Release

3.2.11 Complete BVR Example

Example 12 shows a single complete BVR, starting with the BVR header and leading into the
individual checks.

<bvr>

 <syntaxversion>1.0</syntaxversion>

 <schemafullname>ls.acmecorp.sensorsystem_V1_0</schemafullname>

 <bvrzulutimeofissue>20140912130752</bvrzulutimeofissue>

 <bvrissuenumber>3</bvrissuenumber>

 <checks>

 <check type=”string”>
 <fieldpath lpath=”/parameters/manufacturerName”>
 <minlength>2</minlength>
 <maxlength>50</maxlength>

 <format>MIXED</format>

 <case>UPPER</case>

 </fieldpath>

 </check>

<check type=”string”>
 <fieldpath lpath=”/parameters/powerStatus”>
 <permitted casesensitive=”TRUE”>

 <value>ON</value>

 <value>OFF</value>
 </permitted>

 </fieldpath>

 </check>

<check type=”boolean”>
 <fieldpath lpath=”/parameters/systemActive”>
 <permitted>TRUE</permitted>
 </fieldpath>

 </check>

<check type=”float”>
 <fieldpath lpath=”/parameters/position/latitude”>
 <minvalue>-90</minvalue>
 <maxvalue>90</maxvalue>

 </fieldpath>

 </check>

</checks>

</bvr>

Example 11 A BVR Example.

